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We study the efficiencies of swimming motions due to small deformations of spherical 
and cylindrical bodies at low Reynolds number. A notion of efficiency is defined and 
used to determine optimal swimming strokes. These strokes are composed of 
propagating waves, symmetric about the axis of propulsion. 

1. Introduction 
Swimming micro-organisms inhabit a strange world where our ordinary Newtonian 

intuition does not apply, the world of low-Reynolds-number fluid mechanics. In  the 
limit of zero Reynolds number, which is approached as the organism’s radius 
becomes small, the importance of inertia in determining the motion of the fluid 
becomes negligible. The swimmer’s path through the fluid then depends only on the 
geometry of the sequence of shapes that compose its swimming motion, and not on 
how rapidly the motion is made (Purcell 1977). An important consequence of the 
geometric nature of swimming at low Reynolds number is a gauge structure over the 
space of shapes, which we have described in a recent paper (Shapere & Wilczek 1989). 
In  that paper, we exploited this structure in order to compute the net velocity of a 
nearly spherical organism through a fluid, due to an arbitrary cyclic swimming 
stroke. We also found the swimming motions of cylinders of nearly circular cross- 
sec tion. 

Here, we shall consider the question of eficiency of swimming a t  low Reynolds 
number. Within a restricted space of shapes, what is the best way to swim I t  We shall 
assume that the swimmer makes only small changes of shape. This restriction is 
appropriate for ciliated organisms, which swim by synchronously waving a layer of 
short, densely packed cilia. I n  an approximation known as the envelope model, the 
effects of individual cilia are neglected and the shape is taken to  be a smooth surface 
covering the ciliary layer. This approximation is reasonable a priori, because the 
viscous fluid cannot follow exceedingly fine-grained motion. It is also indicated 
a fortiori, because the cilia are observed to beat collectively, in smooth waves 
(Childress 1978, and references therein). We shall find that the qualitative features 
of observed beating patterns are reproduced by our analysis. 

The swimming motions of a sphere were studied in classic papers by Lighthill 
(1952) and Blake (1970). They considered azimuthally symmetric deformations of a 
sphere and computed the efficiencies of some sample motions. We extend their 
analyses in the first part of this paper to find maximally efficient swimming strokes. 

t We should mention that there is some reason to doubt whether efficiency is the most important 
criterion in determining the swimming motions of micro-organisms, since the power expended for 
locomotion is generally a very small fraction of the organism’s total power output. 
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Our treatment of nearly spherical swimmers does not presume a familiarity with 
Shapcrc & Wilczek (1989). Next, we do the same for cylinders of nearly circular cross- 
section, building on the work of Blake (1971 a ,  b) .  The qualitative similarity of our 
results for sphcres and for cylinders and possible extrapolations to more general 
shapes are discussed in the concluding section. 

2. Squirming spheres 
In this section we shall follow the treatment of swimming motions of nearly 

spherical organisms given by Blake (1970). We shall restrict attention to azimuthally 
symmetric deformations, and assume incompressible steady flow. The equations of 
motion for the fluid velocity field u and the pressure p are 

pV2v = Qp, V. u = 0, (2.1) 

where p is the viscosity. A given infinitesimal change of shape leads to a net motion 
when we match the velocity a t  each point on the shape’s surface to thc fluid velocity 
field and demand that those componcnts of v which would lead to a net forcc or 
torque on the shape vanish. 

Wc consider cyclic swimming motions of period T composed of small deformations 
of a sphere of radius ro.  Such cyclic changes of shape may be cxpanded as series in 
Legcndre polynomials and their dcrivatives : 

n 

n 

r’(8, t )  = ro + wo C an(t) Pn(cos 8) ,  

O’(8,t) = 8+eCbn(t)  Vn(cos8), 

where urn and b, have period T and 

i a  
Vn(c0s8) = ~ --Pn(cos 8). 

(n+ 1 )  a8 (2.3) 

If the radial and azimuthal velocities v, and vo on the surface of the sphere r = r, 
are 

then the general solution is 

(Note that our series begin a t  n = 2. We are neglecting terms with n = 1, since these 
correspond to unphysical rigid self-rotations and translations.) The pressure field 

(2.6) 

is easily checked to satisfy (2.1).  
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Lighthill (1952) defines the efficiency o f a  swimming stroke as the ratio of thc rate 
of drag on a sphere moving with velocity 0 to the average power output required to 
swim with average velocity 0 

6.npr0 O2 
P . (2.7) 

As we shall discuss in the next section, this definition of efficiency is problematic. 
Fortunately, it leads to the same optimal swimming motions as our alternative 
definition, 

where the denominator is maximized over swimming strokes with period T and 
infinitesimal amplitude. By the latter restriction we mean that only shapes that 
deviate pointwise from the average shape by a maximum distance of less than E are 
considered. To calculate either efficiency, we must know the net swimming velocity 
and power output for a given cyclic swimming motion. 

The power output required to deform a sphere according to a given velocity field 
on its surface is obtained from the fluid stress tensor gij as an integral over the surface 
of the sphere (Batchelor 1970) 

9 = vi ‘Tij asj. (2.9) L 
For azimuthally symmetric flow, the relevant stresses exerted by the cilia on the fluid 
are 

from which Blake computes 

9 = 2.n (v,  g,, + vg r: sin 0 d0 s: 
2n2 12n a; +- b; + an bn] n(n+ 1 )  (n+ 1 )  (2n+ 1 )  

(2.10) 

(2.11) 

In  the last line, a is the vector {an,b,}. 

€or azimuthally symmetric boundary conditions : 
Blake also calculates the net velocity of the sphere, which points in the z-direction 

(n+ 1)2a, an+* - (n2-4n-2)  a,+, ti, 
( 2 n  + 1) ( 2 n  + 3) 

U = ro e2 

- (n+ 1) ( n + 2 )  a,  6,+,-n(n+ 1)  b,,, ci, 

(2n+ 1) (2n+3)  

n(3n+2)a,+,6,+n(n+2)b,cE,+, n(n+2)bn~,+,-n2b,+,b, 
- ’ } + 0 ( € 3 )  

( 2 n  + 1 )  ( 2 n  + 3 )  (2n+ 1) ( 2 n + 3 )  
+ 

m 

= ro s2 C F,, a, a,. 
m ,  n=z 

(2.12) 
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(This expression differs from Blake's equation (18) because our normalization ( 2 . 3 )  
of the V, is different.) Here F,, is the 'field strength' tensor defined in Shapere & 
Wilwek (1989). In  averaging the net velocity over onc cycle, we may antisymmetrize 
on the terms in (1.12) by integrating by parts. Then Lighthill's t4Tiriency (2.7) 
becomes 

2 [ J; dt 2 %%I a m  4 N2 
D 

= 3 E 2 - .  (2.13) yo = 3 2  
5" loT dt C P,, cim oi, 

Kote that v0 is invariant under time resealing; henceforth, we set T = 1 .  
Extremization of vo over paths {a,(t), h , ( t ) }  is performed by setting the variation 

of the expression (2.13) with respect to each of the a, and b,  equal to zero. In  our 
abbreviated notation, this gives 

(2.14) 

To make our problem finite, let us assume that only modes k to k + p  are excited. 
First, we shall solve (2.14) in the large-k limit. In  this limit, P and F simplify 

considerably. We obtain 2p + 2 simultaneous linear differential equations for a,  and 
b,, with k d n < k + p :  

(2.15) 

(2.16) 

For large k ,  we may rewrite these equations as the eigenvalue equation of an 
antisymmetric matrix A - P-'F with imaginary eigenvalue ih = i4N/D and complex 
eigenvector I/ = (a,,. . . , b,, . . .)T 

AV = ihV. (2.17) 

This equation is pivot>al in solving our restricted optimization problem. Tf V has A -  
rigenvalue h. then 

is a cyclic path of extremal efficiency. Indeed, the eigenvectors of maximum lhl 
correspond to swimming motions of marimum efficiency. This is seen by relating 
h = &V/D to the efficiency yo = 3c2N2/D. N is very roughly the area in shape space 
enclosed by one cycle of the swimming stroke, and D is roughly its perimeter squared. 
N is maximized over paths of given shapc-space perimeter by circular paths, and D 
is minimized over paths of given 'area' by the same. It should not bc surprising, 
then, that  the strokes of extremal efficiency correspond to evolution via an 
antisymmetric rotation matrix A.  Such a matrix always leads to a circular trajectory 
through shape space, traversed a t  a uniform speed. Now for an organism whose cilia 
are all of length 2e. all possible shape-space trajectories lie within a (2p+2)-  
dimensional sphere of radius 6 .  An extremal swimming stroke will therefore be a 
circle in shape space of radius E ,  for which D = ( 2 7 ~ s ) ~ .  Hence, 

a(t)  = Ete [e-2mtB] (2.18) 

(2.19) 
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The eigenvectors and eigenvalues of A are computed in the Appendix ; the maximum 
eigenvalue is found to be 2 4 2  cos ( n / ( p  + 2 ) ) .  Hence, the maximum possible efficiency 
of a swimming stroke in which only modes k,  . . . , k + p  are excited is 

(2 .20)  

This gives the upper bound on vo ,  for large p .  It is approached asymptotically as 
both p and k go to infinity by the solutions given in the Appendix. These solutions 
have the qualitative appearance of those shown in the figures. In  words, the optimal 
large-k swimming stroke is a travelling-wave-like motion, with waves emanating 
from the north pole of the sphere and terminating a t  the south pole. The detailed 
form of the two solutions of maximum Ihl is 

- 

(2 .21)  

P + l  

j-1 

r ’ ( 0 , t )  = r 0 + e r 0 N + ( l + 4 2 )  C Re 

e l (0 , t )  = B+eN* e-2riti3’-1 sin(--%)} Vk+j-l(cosO). 
j=1 

The normalization factor N+ - should be chosen so that the maximum deformation of 
the sphere is era. 

Blake (1970) computes the efficiencies of some particular swimming motions with 
k = 14 and 19, p = 3, and e = 0.05. It is interesting to compare his results with our 
upper bound for vo.  The maximum value of vo that he obtains is 0.028. Equation 
(2.20), on the other hand, gives 0.097 as an upper bound forp = 3 and large k. In  fact, 
for large p ,  one can do 53% better. 

Thus, for optimal efficiency, one should take a stroke with large p and k and 
efficiency yo as in (2.20). There are two caveats to this conclusion. At finite minimum 
mode number k, we expect our bound to be modified by a term of order k-l. So it is 
conceivable that strokes of efficiency greater than 6n2e2 exist for some small value of 
k .  Second, as p becomes large, the concentration of eigenvalues 2 4 2  cos ( n j / ( p  + 2)) 
near the upper bound 2 4 2  increases. So it is possible to form a great variety of 
strokes of nearly maximal efficiency, from superpositions of cigenvectors with 
cigenvalucs h near to 2 4 2 .  Presumably, as p becomes large, factors due to the 
breakdown of the envelope model and corrections to Stokes’ equation ( 2 . 1 )  will play 
a greater role in determining preferred strokes. 

To close this section, we argue that only azimuthally symmetric deformations need 
be considered in determining optimal swimming strokes, a t  least for large minimum 
mode number k. Our argument relies on the result (equation (4.8) of Shapere & 
Wilczek 1989) for the translation of a sphere due to an arbitrary cycle of small 
deformations. Such deformations may be expanded in terms of vector spherical 
harmonics YJLM ; the full field strength tensor then has six indices J ,  L ,  M ,  J’, L ,  and 
M’. Let us suppose, without loss of generality, that the translation due to one stroke 
is purely in the x-direction. Then, by inspection, it is seen that only the components 
of FY, L, M ,  J , ,  L,, with M = M’ contribute to the translational motion. Azimuthally 
symmetric deformations, with M = M’ = 0, therefore decouple from non-symmetric 
deformations. Also, because FJ, L, M ,  J , ,  L,, M ,  and the power matrix PJ, L, M ,  J , ,  L,, M ,  have 
the same large-J behaviour as FJ, L, J , ,  L,, and PJ, L, o,  J , ,  L,, it can do us no harm to 
restrict attention to the block of the matrix P-lF with M = M’ = 0. This restriction 
has the merit of eliminating the possibility of rotational motion. A net rotation could 



592 A .  Shupere and F .  Wilcxek 

only serve to decrease the efficiency, since the shortest distance between two points 
is a straight line, not a helix. 

We have found the most efficient swimming strokes for a spherical organism in the 
limit of large wavenumber k. The question of whether more efficient strokes exist for 
finite k remains to be addressed. In  the following section, we shall find a negative 
answer to the corresponding question for cylindrical swimmers. 

3. Cylinders and the problem of efficiency 
In  a previous paper (Shapere & Wilczek 1989), we computed the net swimming 

velocities of a nearly circular cylinder due to an arbitrary infinitesimal deformation 
of its cross-section. It is natural to ask, as we did for the sphere, which swimming 
motions are the most efficient. However, the definition of efficiency that was used in 
the case of the sphere is ina,dequate for the cylinder. The reason for this, known as 
Stokes’ paradox, is that it is impossible to drag an infinite cylinder rigidly through 
a fluid a t  zero Reynolds number, if we require the fluid to be stationary at  infinite 
distances from the cylinder. To resolve the ‘paradox ’, one may consider either a fluid 
with small non-zero Reynolds number Re or a cylinder of large finite length L. One 
then finds tthat thc force per unit length needed to maintain a steady velocity 
approaches zero in either of the limits Re + O  or L+ 00. (In fact (Landau & Lifshitz 
1959), the required force is of order -(log Re)-’ or (logL)-’. For large L or small Re, 
the fluid flow is approximately uniform in a large volume around the cylinder ; hence, 
the stresses on the cylinder, which depend on the derivatives of the flow field, become 
small.) In either limit, the efficiency of (2.7) always vanishes, and gives us no way of 
comparing different swimming motions. 

A good definition of efficiency should embody the following attributes. The 
efficiency should be invariant under time rescalings, to ensure that it cannot be taken 
to infinity by, say, lengthening the period of a swimming stroke. It should also be 
invariant under rescaling of the radius ro, for the same reason. Our alternative 
definition, given in (2.8), is indeed independent of rescalings of both T and ro, as well 
as e, and is furthermore automatically normalized to attain a maximum value of 1. 
Independence of e is crucial in ensuring that the maximization over infinitesimal 
strokes in the denominator of (2 .8)  makes sense. As we shall see, the computation of 
ql is quite straightforward. 

Before proceeding, we would like to compare yl to the efficiency defined by Blake 
(1971 a) in the context of two-dimensional flows : 

Ti7 
P ’  yolake = - 

where 5? is an ‘ average characteristic thrusting force per unit area ’. The problem here 
is that the total force exerted by the body is by assumption zero. So, in practice, one 
takes T to be a quantity made up of the characteristic scales appearing in the 
problem with appropriate dimensions, i.e. T K ,u17/ro. In contrast to yl, Blake’s 
efficiency scales as e2 - greater efficiencies are automatically obtained for larger 
deformations. This discussion should serve to demonstrate that  efficiency is a 
somewhat arbitrary concept. However, we believe that any sensible and suitably 
restricted notion of efficiency will lead to the same optimal strokes. This is indeed the 
case with yl and yBlake (for fixed e). 

Let us consider infinitesimal deformations of the cross-section of a cylinder in a fluid 
a t  low Reynolds number. Because the boundary conditions for Stokes’ cquations are 
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z-independent, the resulting fluid flow will also have this property. We can exploit 
the two-dimensionality of the problem by using the complex coordinate z = x+iy. 
Then Stokes’ equations (2.1) may be written 

The general solution to these equations which does not blow up a t  infinity can be 
expressed in terms of two analytic functions 

and 

as 

(3.3) 

(3.4) 

Now consider a cyclic sequence of deformations of a circular cylinder with radius 
r o =  1 :  

[(a, t )  = a + s  c ar(t) ak+l, (3.5) 
k*-1  

where a E eis parameterizes the unit circle. The velocity field on the surface of the 
cylinder a t  time t is then 

v(<(a,  t ) )  = s C oik( t )  a k + l  
k + - 1  

= +1(5(a, t ) )  - [(a, t )  $;([(a, 4) +$2(Y(a,  t ) ) .  (3.6) 

In  the case of a circular cylinder, with [(a) = a, it is easy to solve for the resulting 
fluid velocity by equating Fourier coefficients on both sides of (3.6). The result is 

I $,(Z)  = z c i k 2 k + l ,  
k < O  

= c &-,zk- - ’+(k+l )o i , zk- ’ ,  
k<O 

with v(z) given as in (3.4). 
The power expenditure per unit length at time t is 

9 = Jrvlvljr2ds. 

By making use of (3.1), this may be recast in complex notation as 

(3.7) 

0 

(3.9) 

9 = Re [ i [ --pv + 4~7 az dz] 

_ _  
= ,u Re i [2v($i + z) + 2u( - z$; + +;)I dz] . [I 

In  computing 8, we may assume that the cylinder is circular. This is because any 
corrections due to the deformation of the cross-section will be smaller than the 
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lcading (undeformed) term by a factor of E .  Inserting the solution for a circular 
cylinder (3.7) into (3.9) now gives 

(3.10) 

We also need to know the average net velocity of the cylinder over one swimming 
cycle. This was evaluated in Shapero & Wilczek (1989), and we simply restate the 
result here: 

17 = - dt C [F,, am in + F,, a,tZ, + F,, a, c i n  + Elfiil am %,I, (3.1 1)  .f iT m.n 

where 

(3.12) 

As usual, 0, is 1 for non-negative n and zero for negative n. 

dcformations, have been obtained by Blake (1971 a) .  

Again, we obtain a system of linear equations of the form 

Portions of the results (3.10) and (3.12), corresponding to axially symmetric 

We may now compute the efficiency ql ,  by the same variational method used in 92. 

N / D  
(N/D)Inax 

which may be solved to yield ql = (3.14) 

in terms of the eigenvalues of the matrix P-lF. As before, if 

v = (a-k,. . . ,a-k-p,ak,. . . (3.15) 

is an eigenvector of P ' F  with eigenvalue A,  then Re [e-2a1t V ]  is a swimming stroke 
of extremal efficiency. 

We now restrict attention to swimming motions which are symmetric about the x- 
axis, i.e. for which all a,  are real. An argument similar to the one given a t  the end 
of $2 for restriction to azimuthally symmetric deformations applies. Suppose that 
the net translation due to  one cycle is in the x-direction, i.e. that G is real. Then 
taking the real part of (3.11), we see that the real and imaginary parts of the a, 
decouple, in both 0 and 9. Hence we lose no efficiency in considering only real a,. 
In this case, 

(P- lF)m,  = f'&L(Fmn + F,, +Ffin + Fa,) 

(3.16) 
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t = O  0.2 0.4 

0.6 0.8 1 .o 
FIGURE 1. One cycle of a swimming stroke composed of small deformations of the cross-section of 
a circular cylinder. The stroke is a maximally efficient coupling of modes f 10,. , , , + 13. Waves 
move from left to right along the top and bottom of the cross-section, leading to a net motion to 
the left of 0.009 per cycle (not shown), in units of the average radius. The efficiency is 0.81. 

In the limit of large k ,  we find a surprise : the limiting matrix is identical to the matrix 
A found for the swimming sphere, so our work is already done. Thus, the efficiency 
of an optimal stroke is, for large k ,  

(3.17) V l  = cos- 

Furthermore, it can be shown that the eigenvalues of the exact matrix are always less 
than the bound of (3.17), for any finite value of k .  The proof is sketched at the end 
of the Appendix. 

IT 

p + 2 '  

The two solutions with maximum A are 

The solution {- is self-intersecting, for any finite value of e and large enough p .  
Peculiarly, the waves described by <- (in the regime where the solution is not self- 
intersecting) propagate in the same direction as the body. Pictures of the swimming 
motions {+ with k = 10, E = 0.1, and p = 3, 9, and 15 are given in figures 1 and 2. 
Figure 1, for p = 3, should be read from left to  right, top to bottom. The efficiencies 
of the three strokes, according to (3.17), are approximately 0.81 ( p  = 3),  0.94 
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FIQLTRE 2.  One frame of each of two maximally efficient strokes, coupling modes 19 (a )  
and LO,. . . , +25 ( b ) .  The net translations per cycle are 0.0051 and 0.0039 units, and the 
efficiencies are 0.94 and 0.98, respectively. As the  number of coupled modes increases, the wave 
becomes more and more localized at the midpoint. 

10,. . . , 

( p  = 9), and 0.98 ( p  = 15), and the net translations per cycle are respectively 
0.90e2, 0.51e2, and 0.39~' units to the left. Note that, as the number of coupled modes 
p +  1 (and thus the efficiency) increases, the waveform becomes more and more 
localized near the middle 0 = & $ 7 ~  of the swimming shape. I n  all cases, the waveforms 
progress to the right, and the net translation is to the left. The waves begin a t  the 
front end of the body (relative to the direction of motion) and disappear a t  the rear, 
attaining a maximum amplitude near the middle. These characteristics are consistent 
with the observed metachronal beating patterns of ciliated organisms such as 
Paramecia (Childress 1978). 

4. Conclusions 
We have found maximally efficient swimming motions for spheres (in the short- 

wavelength limit) and for circular cylinders (in general), a t  Reynolds number zero. 
In both cases, the efficiencies were maximized by short-wavelength swimming 
strokes symmetric about the axis of propulsion. The waves propagate between the 
front and rear of the body (relative to the direction of motion), achieving a maximum 
amplitude near the middle. 

Remarkably, in the limit of large mode number k ,  our calculations for the sphere 
and the cylinder were identical. We believe that this represents more than an artifact 
of our choices of mode expansions, and points to a more general property of low- 
Reynolds-number swimming motions. The fact that the fluid flow due to the kth 
mode of oscillation dies off like rPk suggests that, as the wavelength of a swimming 
motion becomes short relative to the scale of curvature of the average shape, all 
effect,s due to the average shape of the swimmer disappear. If this conjecture is true, 
a reasonable approximation might be to treat the surface of the organism locally like 
an infinite plane sheet (see, for example, Childress 1978). Of course, the validity of 
this approximation for envelope-model calculations will break down as the 
wavelength becomes comparable with the spacing of individual cilia. But a t  least for 
wavelengths of several ciliary spacings, this approximation may be useful in 
determining optimal infinitesimal swimming motions of arbitrary shapes. As we have 
seen, this is the relevant limit for maximally efficient swimming of spheres and 
cylinders. 
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Appendix 
To compute the eigenvectors and eigenvalues of the matrix A ,  defined in (2.17) as 

the large-k limit of P-lF, we consider first a simpler matrix with p + l  rows and 
columns 

B =  

in terms of which 

' 0  1 

-1 0 1 

-1 

1 

- 1  0 

A = ( "  B -B " ) .  
As an ansatz for an eigenvector of B, take 

v = (z,z2,  . . . , ZP+l)T. 

Substitution of this V into the eigenvalue equation BV = hV leads to  the equations 
(for 1 <j<p-1)  

-25-1 +23'+1 = ihzi, (A 4) 

ihf(4-hZ)t - ieTis 
from which we deduce z* = 9 

- 
2 

where h E 2 C O S ~ .  So we must consider a solution of the form 

v, = c- V(z-)+c+ V(z+).  (A 6) 

The coefficients are fixed by the first and last components of the eigenvalue equation 
(which we ignored in (A 4)), namely 

'I c- + c+ = ih(c- z- + c+ z+) 

- c- z~ - c+ z~ = ih(c- z~+l+ c+ z?+l).j 

The first equation implies that c- +c+ = 0, and the second gives 

Choosing 

we find V, = (sin$,isin2$, ..., i P ~ i n ( p + l ) $ ) ~  
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with corresponding eigenvalue 
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~ ~ = 2 c o s ( - - - - )  f o r j =  1 ,  ,..,p+i. 

For a given p ,  the maximum possible value of Ih,J is 2 cos ( n / p  + 2), which approaches 
2 as p grows large. 

Now we return to the diagonalization of the big matrix A .  It is easy to see that the 
2p+2 cigenvectors of A may be written in terms of the p +  1 eigenvectors of B :  

with eigenvalues A, = *22/2 cos - 
d?2) .  

The solutions of (2.14) and (3.13) for large minimum mode number k are now 
obtained by inserting V, into (2.18). 

Thus far, we have been considering solutions of (3.13) in the large-k limit. We 
would like to know if there exists, for some finite k, a solution with greater efficiency, 
that is, an eigenvcctor I;; of the exact matrix P-lF (as opposed to the limiting matrix 
A )  with eigenvalue of modulus greater than 2 2/2. Here we shall sketch a proof that, 
a t  least for the circular cylinder, no such solution exists. Our principal tool will be a 
theorem, due to Gershgorin (Goult et al. 1974), which puts bounds on the eigenvalues 
of a complex matrix. 

THEOREM For each eigenvalue h of the matr ix  A = (ai j ) ,  there is an i such that 

and 

Proof Let xi be the component of the eigenvector x with the greatest modulus. 
The ith component, of the eigenvalue equation is 

n 

c aijxj = Ax. 2 '  

j=1 

Reordering and taking absolute values gives 

l(h-agi)xil = I Z atjxjl d Z la,jllxjl 

IX 

f4i j + i  

and hence Jh-aiil d c IUijl d c IUijI. 
j + i  lxil i+i  

The second inequality (A 15) is proved similarly. 
Note that Gershgorin's theorem gives a good bound of 2 on the absolute values of 

the eigenvalues of the matrix 3. For the matrix P-lF of (2.14), we get a bound of 
about 4, which is greater than the desired upper bound of 2 4 2 .  However, a better 
bound can be obtained by applying the same similarity transformation used to bring 
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A into skew-diagonal form, to P-lF. Applying the inequalities (A 17) and (A 18) t o  
the first p +  1 rows and the last p +  1 columns of the transformed matrix shows that 
all eigenvalues of P-'F are less than 2 d 2 .  
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